Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1.

نویسندگان

  • Amber L Mosley
  • John A Corbett
  • Sabire Ozcan
چکیده

Regulation of insulin gene expression in response to increases in blood glucose levels is essential for maintaining normal glucose homeostasis; however, the exact mechanisms by which glucose stimulates insulin gene transcription are not known. We have shown previously that glucose stimulates insulin gene expression by causing the hyperacetylation of histone H4 at the insulin promoter. We demonstrate that the histone acetyltransferase p300 is recruited to the insulin promoter only at high concentrations of glucose via its interaction with the beta-cell-specific transcription factor Pdx-1. Disruption of the function of the endogenous Pdx-1 abolishes the recruitment of p300 to the insulin gene promoter at high concentrations of glucose and results in decreased histone H4 acetylation and insulin gene expression. Furthermore, we demonstrate that the glucose-dependent interaction of Pdx-1 with p300 is regulated by a phosphorylation event that changes the localization of Pdx-1. Based on these data, we conclude that hyperacetylation of histone H4 at the insulin gene promoter in response to high concentrations of glucose depends on the beta-cell-specific transcription factor Pdx-1, which is required for the recruitment of the histone acetyltransferase p300 to the insulin gene promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose.

We have previously demonstrated that high concentrations of glucose stimulate insulin gene expression by causing hyperacetylation of histone H4 at the insulin gene promoter. Furthermore, we have shown that the glucose-mediated hyperacetylation of histone H4 depends on the recruitment of the histone acetyltransferase p300 by the beta cell-specific transcription factor Pdx-1. In this study, we de...

متن کامل

Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47.

Pancreatic beta-cell-type-specific expression of the insulin gene requires both ubiquitous and cell-enriched activators, which are organized within the enhancer region into a network of protein-protein and protein-DNA interactions to promote transcriptional synergy. Protein-protein-mediated communication between DNA-bound activators and the RNA polymerase II transcriptional machinery is inhibit...

متن کامل

Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review).

The homeobox domain transcription factor PDX-1 is essential for pancreatic development and for the maintenance of beta-cell function. The participation of pancreatic duodenal homeobox factor-1 (PDX-1) in the transcription of several genes which are essential for glucose sensing and insulin synthesis underlines its key role in beta-cells of the pancreas. PDX-1 binds to the promoter of insulin, g...

متن کامل

Suppression of transcription factor PDX-1/IPF1/STF-1/IDX-1 causes no decrease in insulin mRNA in MIN6 cells.

The insulin gene transcription factor PDX-1/IPF1/STF-1/ IDX-1 plays a key role in directing beta cell-specific gene expressions. Recently, impairment of PDX-1 expression or activity has been observed in beta cell-derived HIT cells cultured under high glucose concentrations, and this has been suggested as a possible cause of the decrease in insulin gene transcription. To investigate the pathophy...

متن کامل

Glucose modulation of insulin mRNA levels is dependent on transcription factor PDX-1 and occurs independently of changes in intracellular Ca2+.

Glucose regulates insulin production in pancreatic beta-cells in the long term by stimulating insulin gene transcription. These effects are partially mediated through the activity of a homeodomain transcription factor, PDX-1, which binds to four sites within the human insulin gene promoter. The availability of a human beta-like cell line, NES2Y, which lacks PDX-1 but expresses the insulin gene,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular endocrinology

دوره 18 9  شماره 

صفحات  -

تاریخ انتشار 2004